
M A K I N G C O L O R B L I N D - F R I E N D L Y A B M S

Stan Rhodes

Accessibility Beyond the Defaults
In this appendix, we discuss how modelers can make the models they write
in NetLogo more accessible to people with colorblindness.1 We also chal-
lenge the commonuse of the default color schemes and scales inNetLogo by
explicitly discussing their drawbacks for user experience, and offering alter-
natives. NetLogo made agent-based modeling accessible worldwide. How-
ever, we have to acknowledge that, at the time of this book, its accessibility
has improved onlymodestly and its graphical options are limited. Graphics
aren’t everything, but they can help tell the story of the model visually. Al-
though this appendix concentrates on making models colorblind-friendly,
we hope that the considerations discussed here will help us all think a bit
more about our graphical choices, and also what the future of agent-based
modeling might—and should—hold.2

A Quick Primer on Colorblindness
Colorblindness affects people worldwide. However, “colorblindness” as a
term is a bit misleading: most of those with colorblindness have a reduced
ability to see differences in color, from just below normal color perception
to complete inability to perceive the affected color.

The most common type—deuteranomaly—results in reduced per-
ception of green light and difficulty distinguishing between red and
green colors. Similarly, protanomaly is a reduced sensitivity to red light.
Together, deficiencies in red and green cones are called red–green color-
blindness. Trianomaly and tritanopia refer to deficiencies in

1You can find the full-color PDF version of this appendix in the ABMA Code Repo:
https://github.com/SantaFeInstitute/ABMA/tree/master/appendix

2We assume modelers will consider overall visualization issues before, and in conjunction
with, this appendix. For guidance on improving visualization for agent-based modeling,
please see Kornhauser, Wilensky, and Rand (2009).

379

M

https://github.com/SantaFeInstitute/ABMA/tree/master/appendix

Figure A.0. The NetLogo palette in full-color, simulated deuteranopia, and simulated
monochromacy.

perceiving blue. Monochromacy is the inability to distinguish among
any colors.

The terminology used
indicates the source
of the deficiency: for

example, deuteranomaly
indicates a defect in the
cones for green, whereas

deuteranopia indicates the
absence of cones for green.

Blue colorblindness occurs at roughly the same rate in males and fe-
males, while most people with red–green colorblindness are male.
Monochromacy is much rarer than other forms of colorblindness in
both males and females.

For a sense of how a person might with colorblindness might ex-
perience a graphic, see figure A.0, which simulates these difficulties in
distinguishing colors.

Seeing the Problem
We recommend using a program to simulate colorblind views of your
model. When adjusting the models in this book to be moreColor Oracle’s grayscale

option darkens all colors,
including white, so use
that option with some

caution.

colorblind-
friendly, we used Color Oracle (available onWindows, Mac, and Linux)
frequently.3

A web search will find many pre-built colorblind-friendly
color schemes. We recommend the ColorBrewer website (Harrower and
Brewer 2003) for looking at existing color schemes for maps, which are
often a good starting point in thinking about possible color schemes for
your agent-basedmodel.4We recommend Cynthia

Brewer’s book, Designing
Better Maps: A Guide for
GIS Users. Brewer (2016)

Also, ColorBrewer and a colorblind simulator
can help you develop intuition about why, for example, three distinct
colors can work well, but six distinct colors lose distinguishability. Af-
ter selecting different color schemes and numbers of total distinct data
classes in ColorBrewer, use a colorblindness simulator to assess how it

3https://colororacle.org/
4https://colorbrewer2.org/

380

A G E N T - B A S E D M O D E L I N G F O R A R C H A E O L O G Y

https://colororacle.org/
https://colorbrewer2.org/

Appendix

would appear to different types of colorblindness. Keep a healthy skep-
ticism about colorblind-friendly palettes available on the web, as some
work best for only one type of colorblindness, or have weak contrast in
part of their scheme. Always do your own visual test of your model with
a colorblindness simulator.

The Challenges of Agent-Based Modeling and Color Schemes
Making good color schemes for agent-based models can be hard because
we are so constrained in our color options.Models offer many reasons to
color everything differently: landscapes may have more than one value
per patch; agents may be of different types, with different attributes.
When looking at or developing a color scheme for your model, keep
in mind that models with patches and agents will very likely need the
agents to be set in colors distinct from the set of colors used for the
patches, otherwise they won’t show up well. You'll need to think about
agent colors as one ormore of the total colors in the overall color scheme.

Keep the Big Picture in Mind
It may be tempting to color everything distinctly, but think about what
intervals and which distinctions are essential for the audience to under-
stand the big picture. Consider where distinct colors are essential versus

See Kornhauser, Wilensky,
and Rand (2009) for
guidance and a process to
look at the big picture and
refine the visualizations of
your model.

nice-to-have: for example, are intervals for land degradation really im-
portant, and if so, what are the largest viable intervals for those values?
Difficulty in simplifying and emphasizing parts of themodel may reflect
areas where model visualization should be improved.

Shapes Can Help Reduce the Need for Distinct Colors
Shapes expand your ability to distinguish between patches and agents.
Do different agents really need different colors, or could you use differ-
ent shapes instead? A dark triangle on a patch may denote mountainous
terrain as well or better than a distinct color. Different or smaller shapes
may differentiate This appendix includes a

section on shapes near the
end.

juvenile animals from adults. With enough contrast
between colors, a smaller shape can be placed on a larger shape. For ex-
ample, a light-colored spot can be placed on an animal shape to indi-
cate disease, or on a plant shape to indicate flowering or fruiting. These

381

smaller shapes can use colors that are the same or similar to another light
color in your palette. The shape and contrast make the distinction, so
the color similarity doesn’t matter; no one will confuse a yellow dot on
a deer for a yellow patch denoting sandy soil.

Which Colors Work, Which Don’t
You may be asking “Which colors should I use, then?” Unfortunately
the answer is, “It depends.” It depends on the model, and it depends on
what distinctions you want users to be able to make when viewing the
model. We’d recommend using a few heuristics to guide your process.

C O N S I D E R W H I C H G R A D I E N T S A R E C R U C I A L

Consider any crucial gradient(s) youwant to display first, as it will be the
biggest constraint on your remaining colors.What colormakes themost
sense for the maximum value of the gradient?What are the largest viable
intervals for that value, and thus the fewest intervals that will work to
show differences? Would a lighter or darker gradient make sense, and
would it be possible to only use a light or dark gradient, rather than
the whole range? Consider the full range of the gradient you want to
display and then how many shades within the gradient are important to
include. Fewer shades with larger intervals may be sufficient to show the
differences you need.

I F G R E E N I S E S S E N T I A L , S T A R T W I T H I T

Consider if green is a crucial color in your model, because that will con-
strain your options. This really holds true for any crucial color. How-
ever, green is special: green is used in agent-based models all the time as
an indicator of vegetation, yet it’s also a problematic color formost types
of colorblindness. Rethinking the use of plain, pure green in models is
a core challenge of making them colorblind friendly, and often a good
starting point for considering the palette of the model. Would lighter
greens or darker greens be a better choice? Could you keep the meaning
of the green while changing the hue to a bluer or yellower green?

382

A G E N T - B A S E D M O D E L I N G F O R A R C H A E O L O G Y

Appendix

Figure A.1. If a green gradient is essential for the model, the best option for two
contrasting color gradients is light green and dark violet (left). Yellow-green and dark
blue (right) is a second, but much less ideal, option.

S P L I T T H E C O L O R S C H E M E I N T O L I G H T A N D D A R K O P T I O N S

If having many colors seems unavoidable, assemble your color scheme
Try to avoid brown if you
can. Being a combination
of red and green, it’s
usually not worth the
trouble unless it really is
essential to visually
communicate an aspect of
the model.

options by dividing it up into two parts: lighter and darker. These may
be gradients or discrete sets. If only one gradient is needed, light agents
can be used on the dark gradient, or vice versa. If two gradients are
needed, consider using only black and/or white agents.

Gradients in colors schemes

If using a green gradient, the best option for two contrasting color gradi-
ents is light green and dark violet. See figure A.1. Yellow-green and dark
blue can be used, but is We will cover use of the

palette extension in more
detail later in the
appendix.

not ideal for tritanopia, as the hues look similar.
In this example, we apply the NetLogo named color to the turtles

and we use the palette extension to apply the “Greens” color map from
ColorBrewer to the patches. TEST

TEST
CODE BLOCK A.0

create-turtles 500 [
set size 4
set color (random 3 + violet - 4)

]

383

TEST
TEST

CODE BLOCK A.0 (cont.) ask patches [
set pcolor palette:scale-gradient
palette:scheme-colors
"Sequential" "Greens" 5 soil_quality 0 100

]

Discrete values in color schemes

Discrete values need to be farther apart in contrast than colors in a gra-
dient, which means that while four discrete values can be colorblind
friendly, five or more discrete values will become indistinguishable for
people with colorblindness. You can use ColorBrewer to find discrete
values that will work if you use their given RGB values with NetLogo’s
set color and set pcolor . ColorBrewer does not have colorblind-
friendly discrete sets above four discrete values.

The use of any gradient or background colors constrains your avail-
able colors. Although in the model’s VIEW, the patches’ colors are the
likely constraint, NetLogo’s white-background plots are another com-
mon constraint.If you're plotting discrete

colors, you'll need to avoid
light colors like yellow so
that the lines are visible
on the plot. Five discrete

colors inevitably results in
one being light-colored.

We'll provide a few options here for discrete value sets
that are distinguishable on plots. If the colors aren’t to be used on plots,
you have slightly more options.

▷ Discrete valuॸ using NetLogo’s named colors

• Four-color discrete set:

red , orange + 2 , blue , black .

• Five-color discrete set (see fig. A.2):

red , orange + 2 , blue , black , lime + 3 .

384

A G E N T - B A S E D M O D E L I N G F O R A R C H A E O L O G Y

Appendix

Figure A.2. This set of five discrete values can be used in a plot, but adding a further
color will make two of the plot colors indistinguishable. Ideally, we would use only four.

▷ Discrete valuॸ using RGB valuॸ from viridॹ

• Five-color discrete set: TEST
TEST
CODE BLOCK A.1

[252 228 30]
[144 214 45]
[31 146 115]
[42 72 122]
[54 0 65]

N E E D I N G M A N Y C O L O R S S U G G E S T S H I G H
M O D E L C O M P L E X I T Y

If you find yourself needing a lot of colors to distinguish between ele-
ments and components of the model, that suggests the model may be
too complex to be easily understood by others. In that case, using a lot
of colors is unlikely to improve the comprehensibility of the model, and
you should consider simplifying what you're communicating about the
model. You may be able to divide your visualization into separate con-
cepts and find a reduced color option for each of them.

In cases where just one or two more colors seem needed to distin-
guish elements of the model, take another look at whether using shapes

385

Figure A.3. Setting the color bounds to match the bounds of the the variable range
often leads to a confusing mess.

might help. If not, or if you are using a lot of shapes already, reassess the
complexity of the model in light of what you want to communicate.

The Challenges of Default NetLogo Color Gradients
NetLogo’s default color scales present some challenges for user interpre-
tations of models, which then make colorblind-friendly considerations
a little extra tricky. Consider a model that has patches with a soil fertility
score between 0 and 100. We might normally map that to a color using
scale-color :

TEST
TEST

CODE BLOCK A.2 ask patches [set pcolor scale-color
green fertility 0 100]

The result is low-fertility patches that are nearly black, and high-fertility
patches that are nearly white.

Visually, these defaults cause patches to blend with agents, and con-
flict with a basic intuition that fertile soil produces very green grass (in-
stead, here the highest fertility is depicted as white). One way to adapt
NetLogo’s default behavior for an improved visual gradient is to set the
range limits to be outside the fertility variable’s range.We can use this for

386

A G E N T - B A S E D M O D E L I N G F O R A R C H A E O L O G Y

Appendix

Figure A.4. Setting the color bounds out of range enables more intuitive color gradi-
ents than matching the bounds with the variable range.

both light and dark gradients because we can invert the minimum and
maximum values to reverse the color gradient. For example, we might
want low fertility to be light green and high fertility to be dark green.
Before we increase the range limits, we place the larger number first to
invert the scaling so that low values are lighter and high values are darker
(100 0 instead of 0 100). Then, with the color gradient now going
from light to darker, we extend the range by adding some padding (e.g.,
~20) to the resulting numbers so that the extremes are outside the vari-
able’s range: TEST

TEST
CODE BLOCK A.3

ask patches [set pcolor scale-color
green fertility 120 -20]

Guessing at how much padding to add is, well, guessing. If we could
normalize the range between 0 and themax of a variable for any variable,
we could avoid NetLogo’s color variant extremes consistently without
guesswork. And we can!

A V O I D I N G E X T R E M E L I G H T A N D D A R K C O L O R S I N
V A N I L L A N E T L O G O

Here we provide a more programmatic and consistent way of setting the
appropriate outside-the-variable-range bounds to avoid light and dark

387

extremes, which also uses a vivid color (one of NetLogo’s named colors)
at one end of the gradient instead. In figure A.5 we show four gradients:
vivid-to-light, light-to-vivid, vivid-to-dark, and dark-to-vivid. The code
for each requires a variable, we use fertility , that ranges from 0 to
a maximum value. We also set varmax to be the maximum value of
fertility , which should be set in the code (e.g., set varmax 100).
Here is the code for each in turn:

▷ Vividest color = 0, light color = variable’s max value:TEST
TEST

CODE BLOCK A.4
let upperbound (varmax + varmax / 2)
let lowerbound (-1 * (varmax + varmax / 2))
set pcolor scale-color green

fertility lowerbound upperbound

▷ Light color = 0, vividest color = variable’s max value:TEST
TEST

CODE BLOCK A.5
let upperbound (2 * varmax + varmax / 2)
let lowerbound -1 * (varmax / 2)
set pcolor scale-color green

fertility upperbound lowerbound

▷ Vividest color = 0, dark color = variable’s max value:TEST
TEST

CODE BLOCK A.6
let upperbound (-1 * (varmax + varmax / 2))
let lowerbound (varmax + varmax / 2)
set pcolor scale-color green

fertility lowerbound upperbound

▷ Dark color = 0, vividest color = variable’s max value:TEST
TEST

CODE BLOCK A.7
let upperbound -1 * (varmax / 2)
let lowerbound (2 * varmax + varmax / 2)
set pcolor scale-color green

fertility upperbound lowerbound

These are an improvement over the default behavior, and are color-
blind friendlier. Often they will do the trick if you need to use a Net-
Logo word color; you can use any of NetLogo’s named colors in place

388

A G E N T - B A S E D M O D E L I N G F O R A R C H A E O L O G Y

Appendix

Figure A.5. Programmatically setting the color bounds out of range enables fine,
consistent control of the color gradient with any range of variable values. From left
to right: vivid-to-light, light-to-vivid, vivid-to-dark, dark-to-vivid.

of green . However, we can usually do as well or better with the
palette extension because it can use the predefined, and multi-color,
ColorBrewer palettes.

U S I N G T H E C O L O R - PA L E T T E E X T E N S I O N

The palette extension is a default extension included inNetLogo, and its
functions can be made available within a NetLogo by including
extensions [palette] at the start of the code. Here is an example

of using the palette extension to set a color gradient: TEST
TEST
CODE BLOCK A.8

The NetLogo palette
extension doesn’t have the
sequential ColorBrewer
class “YlGn” (which is a
really useful one!), but we
provide an implementation
of it below.

ask patches [
set pcolor palette:scale-gradient

palette:scheme-colors
"Sequential" "Reds" 3 artifact_density 0 100

]

The easiest way to use the color-palette extension is with Color-
Brewer settings. Make sure to test the qualitative ColorBrewer schemes
in your model with a colorblindness simulator tool. Some of the
schemes work better than others, especially on plots.5

5The original documentation on the palette extension is a bit scattered; please see:
https://ccl.northwestern.edu/netlogo/docs/palette.html
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/doc/
NetLogo%20Color%20Howto%202.htm

389

https://ccl.northwestern.edu/netlogo/docs/palette.html
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/doc/NetLogo%20Color%20Howto%202.htm
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/doc/NetLogo%20Color%20Howto%202.htm

Advanced Palette Extension: Making Custom Palettes
The palette extension also gives us advanced options for colors where
we can specify the entire scheme with RGB values. In our experience, this
is often not worth the effort, and also makes for very hefty code. Use it
sparingly and only when you can’t find another viable alternative.

Currently the YlGn palette from ColorBrewer has not been imple-
mented in NetLogo’s palette extension, so we will implement it here as
an example using ColorBrewer’s YlGn color scheme with five data
classes.The nine-data class

version would have nine
RGB colors in the list.

To get these values, we went to the ColorBrewer website6 and
selected the YlGn sequential scheme, then made sure we copied the RGB

(versus HEX or CYMK) values. The copied text will require some cleanup
to make the RGB values the format NetLogo requires.TEST

TEST
CODE BLOCK A.9

ask patches [
set pcolor palette:scale-gradient

[
[255 255 204]
[194 230 153]
[120 198 121]
[49 163 84]
[0 104 55]

]
variable-name 0 100

]

We recommend using a
text editor with good

find-and-replace
functionality when working
with large color palettes to

clean up commas and
insert the square brackets
for NetLogo-bound code.
This includes programs

such as Notepad++
(Windows) or Atom

(Windows, Mac, Linux).

Once you assign colors in an RGB format (e.g., 255 255 204), the
typical NetLogo approach of adding or subtracting values (set
pcolor pcolor +3) to lighten or darken a color will no longer work.
The color’s data structure is now different; RGB is a list of three 0-to-255
values rather than single number from 0 to 140. Adjusting color in this
way is bad coding practice as well; updating the color only wouldmean it
no longer represented the underlying value. When the color is set from
an underlying variable initially, every subsequent color change should
use that underlying value to set the color.

6 https://colorbrewer2.org/

390

A G E N T - B A S E D M O D E L I N G F O R A R C H A E O L O G Y

https://colorbrewer2.org/

Appendix

You might wonder if you can increment RGB values in the same way
you would increment single-value or named colors in NetLogo. Unfor-
tunately, changing RGB values isn’t a simple linear process, so adding
or subtracting values from one of the three RGB values (or all of them)
won’t give consistent results.

C A N W E U S E S O M E O P T I M A L C O L O R S C H E M E ?

If we were considering gradients for data visualization only, in most
cases we would want to use a color scheme that was uniform to all users, but
which also maximized the perceptual range of all users (colorblind or not).
A number of color maps fit these criteria well enough, including viridis,
magma, inferno, and plasma (created by Stéfan van derWalt and Nathaniel
Smith) and cividis (created by Jamie R. Nuñez, Christopher R. Anderton,
and Ryan S. Renslow). Unfortunately, implementing these color maps in
NetLogo is no easy task: you'll need to convert the map to a long list of RGB

values for the palette extension (e.g. code block A.9).
In some cases, these color maps will need to be found inside a pack-

age. For example, with viridis, you can load the package in R and look at
the color map as a dataframe. The values in the dataframe can then be
parsed into RGBs and written to a string that can be used in NetLogo.

An RMarkdown document
for creating a NetLogo
list from the viridis colors
is available in the
ABMA Code Repo as
viridis_color_calcs.rmd.

Keep inmind that agent-basedmodels are usuallymore complicated
than a single gradient, which means that as more colors are needed for
agents, fewer colors are available for gradients. The gradients, then, will
need to be pared down to just a few colors; you will need to pick a sub-
range in the color map that works well for your other color choices.

Working with Shapes
Shapes offer a lot of possibilities for improving your model visually,
both for distinguishing different types of agents and for clarifying land-
scape or environmental features.

O U T L I N I N G S H A P E S F O R B E T T E R V I S I B I L I T Y

Generally, lighter-colored landscapes with vivid-colored agents work
well. However, sometimes a landscape may make agents a little harder
to see. Heterogeneous landscapes using color gradients can cause visual

391

Figure A.6. The shapes editor can be used to outline existing shapes in black for
higher contrast and for avoiding agent colors “bleeding” into patch colors.

confusion when part of the gradient has a similar contrast to the agent.
In these situations, the agents need more visual “pop.”

Remember that you can
import shapes from the
shape library or import

them from another
NetLogo model. See https:

//ccl.northwestern.edu/
netlogo/docs/shapes.html

A black outline should give agents the necessary contrast to work
on any landscape. Unfortunately, most default shapes have no black
outline; fortunately, adding a black outline to most shapes is straight-
forward, see figure A.6. NetLogo comes with a shapes editor built in,
accessible via TOOLS > TURTLE SHAPES EDITOR.

U S I N G S H A P E S F O R S T A T E S O R T E R R A I N

Shapes may better communicate a terrain type than patch color alone:
for example, a triangle may better represent a mountain than trying to
pick the “right” mountain color, as in figure A.7.

Shapes may also help denote landscape states better than color
alone, particularly when the landscape has events such as snow, rain,
seeds germinating, or plants fruiting. See figure A.7.

W H E N U S I N G S H A P E S , U S E R E X P E R I E N C E I S S T I L L K I N G

Howmany shapes are toomany? Again, it depends entirely on themodel.
A good general approach isKornhauser, Wilensky, and

Rand (2009) discuss visual
design principles and

considerations in
great depth.

to modify one feature at a time, run the
model, and ask yourself whether the visualization feels busy. Sometimes
taking a little time off from the model before revisiting it can help you
see it afresh. If you're still not sure, show it to someone for feedback.

392

A G E N T - B A S E D M O D E L I N G F O R A R C H A E O L O G Y

https://ccl.northwestern.edu/netlogo/docs/shapes.html
https://ccl.northwestern.edu/netlogo/docs/shapes.html
https://ccl.northwestern.edu/netlogo/docs/shapes.html

Figure A.7. Shapes can tell part of the story when the paired colors provide sufficient
contrast. Top: Seeds, as circles, sprout into plants. Middle: Lines in the clouds rep-
resent rain, and water running down to plants are dots on the mountains. Bottom:
Plants with mature ears of maize have yellow dots with high contrast.

As Accessibility Evolves, So Does Our Thinking
Keep in mind that although it would be nice to “do it right the first time,”
that is an unrealistic expectation for any modeler. Developing a clear,
concise, and accessible model is an iterative process. Making
models colorblind-friendly involves trade-offs in meaningful color-based
communication, but we have found that understanding these trade-offs
and working within these constraints has improved the depth of our un-
derstanding of the use of color, and our approach to modeling overall. We
hope you will find the same benefits!

Appendix

393

